open access publication

Article, 2024

Gigahertz semiconductor laser at a center wavelength of 2 μm in single and dual-comb operation

OPTICS EXPRESS, ISSN 1094-4087, 1094-4087, Volume 32, 1, 10.1364/OE.503035

Contributors

Gaulke, Marco 0000-0002-0676-6483 (Corresponding author) [1] [2] Heidrich, Jonas 0000-0002-2656-0933 Huwyler, Nicolas [1] [2] Schuchter, Maximilian [1] [2] [3] Golling, Matthias [1] [2] Willenberg, Benjamin Barh, Ajanta 0000-0002-8589-0238 [1] [2] [4] Keller, Ursula [1] [2]

Affiliations

  1. [1] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
  2. [NORA names: Switzerland; Europe, Non-EU; OECD];
  3. [2] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
  4. [NORA names: Switzerland; Europe, Non-EU; OECD];
  5. [3] Tampere Univ, Fac Engn & Nat Sci, Optoelect Res Ctr, Phys Unit, POB 692, FIN-33014 Tampere, Finland
  6. [NORA names: Finland; Europe, EU; Nordic; OECD];
  7. [4] Tech Univ Denmark, Dept Elect & Photon Engn DTU Electro, DK-4000 Roskilde, Denmark
  8. [NORA names: DTU Technical University of Denmark; University; Denmark; Europe, EU; Nordic; OECD]

Abstract

Dual-comb lasers are a new class of ultrafast lasers that enable fast, accurate and sensitive measurements without any mechanical delay lines. Here, we demonstrate a 2-mu m laser called MIXSEL (Modelocked Integrated eXternal-cavity Surface Emitting Laser), based on an optically pumped passively modelocked semiconductor thin disk laser. Using III-V semiconductor molecular beam epitaxy, we achieve a center wavelength in the shortwave infrared (SWIR) range by integrating InGaSb quantum well gain and saturable absorber layers onto a highly reflective mirror. The cavity setup consists of a linear straight configuration with the semiconductor MIXSEL chip at one end and an output coupler a few centimeters away, resulting in an optical comb spacing between 1 and 10 GHz. This gigahertz pulse repetition rate is ideal for ambient pressure gas spectroscopy and dual-comb measurements without requiring additional stabilization. In single-comb operation, we generate 1.5-ps pulses with an average output power of 28 mW, a pulse repetition rate of 4 GHz at a center wavelength of 2.035 mu m. For dual-comb operation, we spatially multiplex the cavity using an inverted bisprism operated in transmission, achieving an adjustable pulse repetition rate difference estimated up to 4.4 MHz. The resulting heterodyne beat reveals a low-noise down-converted microwave frequency comb, facilitating coherent averaging.

Data Provider: Clarivate